Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cancer Res ; 83(6): 922-938, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638333

RESUMO

Despite the remarkable clinical responses achieved with immune checkpoint blockade therapy, the response rate is relatively low and only a subset of patients can benefit from the treatment. Aberrant RNA accumulation can mediate IFN signaling and stimulate an immune response, suggesting that targeting RNA decay machinery might sensitize tumor cells to immunotherapy. With this in mind, we identified an RNA exoribonuclease, XRN1, as a potential therapeutic target to suppress RNA decay and stimulate antitumor immunity. Silencing of XRN1 suppressed tumor growth in syngeneic immunocompetent mice and potentiated immunotherapy efficacy, while silencing of XRN1 alone did not affect tumor growth in immunodeficient mice. Mechanistically, XRN1 depletion activated IFN signaling and the viral defense pathway; both pathways play determinant roles in regulating immune evasion. Aberrant RNA-sensing signaling proteins (RIG-I/MAVS) mediated the expression of IFN genes, as depletion of each of them blunted the elevation of antiviral/IFN signaling in XRN1-silenced cells. Analysis of pan-cancer CRISPR-screening data indicated that IFN signaling triggered by XRN1 silencing is a common phenomenon, suggesting that the effect of XRN1 silencing may be extended to multiple types of cancers. Overall, XRN1 depletion triggers aberrant RNA-mediated IFN signaling, highlighting the importance of the aberrant RNA-sensing pathway in regulating immune responses. These findings provide the molecular rationale for developing XRN1 inhibitors and exploring their potential clinical application in combination with cancer immunotherapy. SIGNIFICANCE: Targeting XRN1 activates an intracellular innate immune response mediated by RNA-sensing signaling and potentiates cancer immunotherapy efficacy, suggesting inhibition of RNA decay machinery as a novel strategy for cancer treatment.


Assuntos
Neoplasias , RNA , Animais , Camundongos , Exonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Estabilidade de RNA , Transdução de Sinais
2.
Braz. J. Pharm. Sci. (Online) ; 59: e21343, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439516

RESUMO

Abstract Voriconazole increases tacrolimus blood concentration significantly when coadministrated. The recommendation of reducing tacrolimus to 1/3 in voriconazole package insert seems not to be satisfactory in clinical practice. In vitro studies demonstrated that the magnitude of inhibition depends on the concentration of voriconazole, while voriconazole exposure is determined by the genotype status of CYP2C19. CYP2C19 gene polymorphism challenges the management of drug-drug interactions(DDIs) between voriconazole and tacrolimus. This work aimed to predict the impact of CYP2C19 polymorphism on the DDIs by using physiologically based pharmacokinetics (PBPK) models. The precision of the developed voriconazole and tacrolimus models was reasonable by evaluating the pharmacokinetic parameters fold error, such as AUC0-24, Cmax and tmax. Voriconazole increased tacrolimus concentration immediately in all population. The simulated duration of DDIs disappearance after voriconazole withdrawal were 146h, 90h and 66h in poor metabolizers (PMs), intermediate metabolizers (IMs) and extensive metabolizers(EMs), respectively. The developed and optimized PBPK models in this study can be applied to assit the dose adjustment for tacrolimus with and without voriconazole.


Assuntos
Tacrolimo/agonistas , Fator de Impacto , Voriconazol/agonistas , Citocromo P-450 CYP2C19/análise , Técnicas In Vitro/métodos , Preparações Farmacêuticas/administração & dosagem , Adaptação Psicológica/classificação
3.
Front Pharmacol ; 13: 856792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924047

RESUMO

Objective: Cefoperazone/sulbactam is a commonly used antibiotic combination against the extended-spectrum beta-lactamases (ESBLs)-producing bacteria. The objective of this study was to evaluate the efficacy of a new cefoperazone/sulbactam combination (3:1) for Enterobacteriaceae infection via model-informed drug development (MIDD) approaches. Methods: Sulperazon [cefoperazone/sulbactam (2:1)] was used as a control. Pharmacokinetic (PK) data was collected from a clinical phase I trial. Minimum inhibitory concentrations (MICs) were determined using two-fold broth microdilution method. The percent time that the free drug concentration exceeded the minimum inhibitory concentration (%fT>MIC) was used as the pharmacokinetic/pharmacodynamic indicator correlated with efficacy. Models were developed to characterize the PK profile of cefoperazone and sulbactam. Monte Carlo simulations were employed to determine the investigational regimens of cefoperazone/sulbactam (3:1) for the treatment of infections caused by Enterobacteriaceae based on the probability of target attainment (PTA) against the tested bacteria. Results: Two 2-compartment models were developed to describe the PK profiles of cefoperazone and sulbactam. Simulation results following the single-dose showed that the regimens of cefoperazone/sulbactam combinations in the ratios of 3:1 and 2:1 achieved similar PTA against the tested bacteria. Simulation results from the multiple-dose showed that the dosing regimen of cefoperazone/sulbactam (4 g, TID, 3 g:1 g) showed slightly better antibacterial effect than cefoperazone/sulbactam (6 g, BID, 4 g:2 g) against the Escherichia coli (ESBL-) and Klebsiella pneumoniae (ESBL-). For the other tested bacteria, the above regimens achieved a similar PTA. Conclusions: Cefoperazone/sulbactam (3:1) showed similar bactericidal activity to sulperazon [cefoperazone/sulbactam (2:1)] against the tested bacteria. For the ESBL-producing and cefoperazone-resistant E. coli and K. pneumoniae, Cefoperazone/sulbactam (3:1) did not exhibit advantage as anticipated. Our study indicated that further clinical trials should be carried out cautiously to avoid the potential risks of not achieving the expected target.

4.
Thromb Res ; 218: 24-34, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985100

RESUMO

BACKGROUND: The concurrent administration of dronedarone and oral anti-coagulants is common because both are used in managing atrial fibrillation (AF). Dronedarone is a moderate inhibitor of the cytochrome P450 3A4 (CYP3A4) enzyme and P-glycoprotein (P-gp). Apixaban and rivaroxaban are P-gp and CYP3A4 substrates. This study aims to investigate the impact of exposure and bleeding risk of apixaban or rivaroxaban when co-administered with dronedarone using physiologically based pharmacokinetic/pharmacodynamic analysis. METHODS: Modeling and simulation were conducted using Simcyp® Simulator. The parameters required for dronedarone modeling were collected from the literature. The developed dronedarone physiologically based pharmacokinetic (PBPK) model was verified using reported drug-drug interactions (DDIs) between dronedarone and CYP3A4 and P-gp substrates. The model was applied to evaluate the DDI potential of dronedarone on the exposure of apixaban 5 mg every 12 h or rivaroxaban 20 mg every 24 h in geriatric and renally impaired populations. DDIs precipitating major bleeding risks were assessed using exposure-response analyses derived from literature. RESULTS: The model accurately described the pharmacokinetics of orally administered dronedarone in healthy subjects and accurately predicted DDIs between dronedarone and four CYP3A4 and P-gp substrates with fold errors <1.5. Dronedarone co-administration led to a 1.29 (90 % confidence interval (CI): 1.14-1.50) to 1.31 (90 % CI: 1.12-1.46)-fold increase in the area under concentration-time curve for rivaroxaban and 1.33 (90 % CI: 1.15-1.68) to 1.46 (90 % CI: 1.24-1.92)-fold increase for apixaban. The PD model indicated that dronedarone co-administration might potentiate the mean major bleeding risk of apixaban with a 1.45 to 1.95-fold increase. However, the mean major bleeding risk of rivaroxaban was increased by <1.5-fold in patients with normal or impaired renal function. CONCLUSIONS: Dronedarone co-administration increased the exposure of rivaroxaban and apixaban and might potentiate major bleeding risks. Reduced apixaban and rivaroxaban dosing regimens are recommended when dronedarone is co-administered to patients with AF.


Assuntos
Fibrilação Atrial , Rivaroxabana , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Idoso , Fibrilação Atrial/tratamento farmacológico , Citocromo P-450 CYP3A/metabolismo , Dronedarona/farmacologia , Interações Medicamentosas , Hemorragia/induzido quimicamente , Humanos , Pirazóis , Piridonas , Rivaroxabana/farmacocinética , Rivaroxabana/uso terapêutico
5.
Proc Natl Acad Sci U S A ; 116(46): 23264-23273, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662475

RESUMO

Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) plays a critical role in cancer metabolism by coordinating glycolysis and biosynthesis. A well-validated PGAM1 inhibitor, however, has not been reported for treating pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest malignancies worldwide. By uncovering the elevated PGAM1 expressions were statistically related to worse prognosis of PDAC in a cohort of 50 patients, we developed a series of allosteric PGAM1 inhibitors by structure-guided optimization. The compound KH3 significantly suppressed proliferation of various PDAC cells by down-regulating the levels of glycolysis and mitochondrial respiration in correlation with PGAM1 expression. Similar to PGAM1 depletion, KH3 dramatically hampered the canonic pathways highly involved in cancer metabolism and development. Additionally, we observed the shared expression profiles of several signature pathways at 12 h after treatment in multiple PDAC primary cells of which the matched patient-derived xenograft (PDX) models responded similarly to KH3 in the 2 wk treatment. The better responses to KH3 in PDXs were associated with higher expression of PGAM1 and longer/stronger suppressions of cancer metabolic pathways. Taken together, our findings demonstrate a strategy of targeting cancer metabolism by PGAM1 inhibition in PDAC. Also, this work provided "proof of concept" for the potential application of metabolic treatment in clinical practice.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Fosfoglicerato Mutase/antagonistas & inibidores , Regulação Alostérica , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Terapia de Alvo Molecular , Transplante de Neoplasias , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
6.
Acta Pharmacol Sin ; 39(9): 1522-1532, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29644999

RESUMO

Liver metabolism is commonly considered the major determinant in drug discovery and development. Many in vitro drug metabolic studies have been developed and applied to understand biotransformation. However, these methods have disadvantages, resulting in inconsistencies between in vivo and in vitro experiments. A major factor is that they are static systems that do not consider the transport process in the liver. Here we developed an in vitro dynamic metabolic system (Bio-PK metabolic system) to mimic the human pharmacokinetics of tolbutamide. Human liver microsomes (HLMs) encapsulated in a F127'-Acr-Bis hydrogel (FAB hydrogel) were placed in the incubation system. A microdialysis sampling technique was used to monitor the metabolic behavior of tolbutamide in hydrogels. The measured results in the system were used to fit the in vitro intrinsic clearance of tolbutamide with a mathematical model. Then, a PBPK model that integrated the corresponding in vitro intrinsic clearance was developed to verify the system. Compared to the traditional incubation method, reasonable PK profiles and the in vivo clearance of tolbutamide could be predicted by integrating the intrinsic clearance of tolbutamide obtained from the Bio-PK metabolic system into the PBPK model. The predicted maximum concentration (Cmax), area under the concentration-time curve (AUC), time to reach the maximum plasma concentration (Tmax) and in vivo clearance were consistent with the clinically observed data. This novel in vitro dynamic metabolic system can compensate for some limitations of traditional incubation methods; it may provide a new method for screening compounds and predicting pharmacokinetics in the early stages, supporting the development of compounds.


Assuntos
Microssomos Hepáticos/metabolismo , Tolbutamida/farmacocinética , Difusão , Feminino , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Masculino , Microdiálise/métodos , Modelos Teóricos , Poloxâmero/síntese química , Poloxâmero/química , Tolbutamida/metabolismo
7.
Acta Pharmacol Sin ; 36(5): 614-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25864651

RESUMO

AIM: Blockade of EGFR by EGFR tyrosine kinase inhibitors such as erlotinib is insufficient for effective treatment of human pancreatic cancer due to independent activation of the Akt pathway, while amiloride, a potassium-sparing diuretic, has been found as a potential Akt inhibitor. The aim of this study was to investigate the anticancer effects of combined amiloride with erlotinib against human pancreatic cancer cells in vitro. METHODS: Cell proliferation, colony formation, cell cycle and apoptosis were analyzed in 4 human pancreatic cancer cell lines Bxpc-3, PANC-1, Aspc-1 and CFPAC-1 treated with erlotinib or amiloride alone, or in their combination. The synergistic analysis for the effects of combinations of amiloride and erlotinib was performed using Chou-Talalay's combination index isobolographic method. RESULTS: Amiloride (10, 30, and 100 µmol/L) concentration-dependently potentiated erlotinib-induced inhibition of cell proliferation and colony formation in the 4 pancreatic cancer cell lines. Isobolographic analysis confirmed that combinations of amiloride and erlotinib produced synergistic cytotoxic effects. Amiloride significantly potentiated erlotinib-induced G0/G1 cell-cycle arrest and apoptosis in Bxpc-3 and PANC-1 cells. Amiloride inhibited EGF-stimulated phorsphorylation of AKT, and significantly enhanced erlotinib-induced downregulation of phorsphorylation of EGFR, AKT, PI3K P85 and GSK 3ß in Bxpc-3 and PANC-1 cells. CONCLUSION: Amiloride sensitizes human pancreatic cancer cells to erlotinib in vitro through inhibition of the PI3K/AKT signaling pathway. Treatment of pancreatic cancer patients with combination of erlotinib and amiloride merits further investigation.


Assuntos
Amilorida/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cloridrato de Erlotinib/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...